

ANNEXURE - I
ENGINEERING MATHEMATICS
(Common for all branches of Diploma in Engineering)

Unit-I:

Partial Fractions:

Resolve rational fractions (proper fractions) into partial fractions covering the types mentioned below.

$$(i) \frac{f(x)}{(ax+b)(cx+d)} \quad (ii) \frac{f(x)}{(ax+b)^2(cx+d)}$$

Matrices:

Definition of a matrix, types of matrices - Algebra of matrices, equality of two matrices, sum, difference, scalar multiplication and product of matrices. Transpose of a matrix, Symmetric, skew-symmetric matrices-Determinant of a square matrix, minor and cofactor of an element, Laplace's expansion, properties of determinants - Singular and non-singular matrices, Adjoint and multiplicative inverse of a square matrix-System of linear equations in 3 variables-Solutions by Cramer's rule and Matrix inversion method.

Unit-II:

Trigonometry:

Properties of Trigonometric functions-Ratios of Compound angles, multiple angles, sub multiple angles,-Transformations of Products into sum or difference and vice versa-Simple trigonometric equations-Inverse Trigonometric functions.

Complex Numbers:

Definition of a complex number, modulus, conjugate and amplitude of a complex number – Arithmetic operations on complex numbers - Modulus-Amplitude (polar) form, Exponential form (Euler form) of a complex number.

Unit-III :

Analytical Geometry

Circles-Equation given center and radius-Given ends of diameter-General equation-finding center and radius. Standard forms of equations of Parabola, Ellipse and Hyperbola – simple properties.

Unit-IV:

Differentiation and its Applications

Definition and Properties of Limits and Standard Limits - Differentiation from the First Principles- Derivatives of standard algebraic, logarithmic, Exponential, trigonometric, inverse trigonometric, hyperbolic and inverse hyperbolic functions - Derivatives of sum, difference, scalar multiplication, product, quotient of functions - Chain rule, derivatives of parametric functions, derivatives of implicit functions, logarithmic differentiation - Second order derivatives - Functions of several variables, first and second order partial derivatives.

Geometrical applications of the derivative (equations of tangent and normal to a curve at any point)

Physical applications of derivatives – Velocity, acceleration, derivative as a rate measurer Applications of the derivative to find the extreme values – Increasing and decreasing functions, maxima and minima for quadratic and cubic polynomials

Absolute, relative and percentage errors - Approximate values due to errors in measurements.

Unit-V:

Integration and Its Applications

Indefinite Integral – Standard forms –Integration by decomposition of the integrand of trigonometric, algebraic, exponential, logarithmic and Hyperbolic functions – Integration by substitution–Integration of reducible and irreducible quadratic factors–Integration by parts – Definite Integrals and properties.

Unit-VI:

Differential Equations

Definition of a differential equation-order and degree of a differential equation- formation of differential equations-solution of differential equation of the type first order, first degree (variable-separable, linear differential equation of the form $\frac{dy}{dx}+py=Q$)

ANNEXURE- II
FORDIPLOMAHOLDERS
MATHEMATICS(CommonSyllabus)

NumberofQuestionsto be SetUnit Wise(Total50)

UNITNO	TOPICS	MARKS
I	Matrices	05
	Partial Fractions	02
	Trigonometry	10
II	Complex numbers	02
	Analytical geometry	06
III	Differentiation and its applications	10
IV	Integration and its applications	08
V	Differential equations	07
Total		50

ANNEXURE -III
FORDIPLOMAHOLDERSMODEL
QUESTIONSFORMATHEMATICS

1. The maximum value of $5+8\cos\theta + 6\sin\theta$ is
 1) 25
 2) 19
 3) 15
 4) 5
2. The value of $\cos 10^\circ \cos 50^\circ \cos 70^\circ$
 is 1) $\frac{\sqrt{3}}{4}$
 2) $\frac{\sqrt{3}}{2}$
 3) $\frac{\sqrt{3}}{6}$
 4) $\frac{\sqrt{3}}{8}$
3. If $\sec 2\theta = \frac{-2}{\sqrt{3}}$ then the general solution θ is
 1) $2n\pi \pm \frac{5\pi}{6}$
 2) $n\pi \pm \frac{5\pi}{6}$
 3) $n\pi \pm \frac{5\pi}{12}$
 4) $2n\pi \pm \frac{\pi}{6}$
4. The eccentricity of the ellipse $3x^2 + 2y^2 = 6$ is
 1) $\frac{1}{3}$
 2) $\frac{1}{\sqrt{3}}$
 3) $\frac{1}{4}$
 4) $\frac{1}{2}$
5. $\int_0^1 \frac{xe^x}{(1+x)^2} dx =$
 1) $\frac{e-2}{2}$
 2) $e-2$
 3) $\frac{e-1}{2}$
 4) $e-1$